

Investigating practical optimisations for data verification

How can the block sizes of a Merkle tree's leaf nodes be optimised as a function of

the unreliability of the channel to maximise speed in data verification?

Computer Science Extended Essay

Word count: 3879

Contents

1 Introduction​ 3

2 Theoretical Background​ 4

2.1 Hash Functions​ 4

2.2 Merkle Trees​ 6

2.3 Network Unreliability​ 7

3 Primary Data​ 9

3.1 Hypothesis​ 9

3.2 Methodology​ 10

3.3 Observations​ 14

3.4 Results​ 15

4 Data Analysis​ 18

5 Next Steps​ 20

6 Conclusion​ 21

Appendix​ 22

Bibliography​ 26

1​ Introduction

Data verification is integral to any process involving data transfer. It is the process by

which a user can verify the data they received is the same as what they were sent.

Whether verifying data from network requests or locally transferring files, modern

computer users make use of this process in almost every application. There are a

myriad of methods to verify data, ranging significantly in complexity based on both

the data and how strict the verification needs to be. Speed is the primary factor when

considering methods of data verification, this is apparent in that contemporary data

verification is so seamlessly quick users are often unaware it even takes place. In

this paper, only strict equality in terms of data verification will be discussed, where

data is verified exactly and no deviation is tolerated. This paper will be centred

around data verification, particularly for transmission across the Internet, with

consideration of the various variables not present in local transmission.

The most straightforward way to verify a downloaded file is by comparing it directly

with itself, essentially iterating through the data and seeing if each value matches up.

Of course, this raises a number of issues in terms of both speed and efficiency,

however in the context of downloading a file, issues such as visibility and network

corruption arise. A cryptographic hash solves both of these issues, performing

mathematical operations on data and outputting an indecipherable hash output of

fixed length. The size of the fixed output will also generally be much smaller than the

size of the file being downloaded saving time in large downloads. This method of

transfer and verification is not sustainable as the sizes increase, however: this is

because if data is corrupted, the entire file will have to be re-downloaded. Thus, for

the transmission of large files, it’ll first be split into chunks. These chunks additionally

help narrow down the source of corruption ensuring only corrupted data chunks are

re-downloaded rather than the entire file itself. In order to increase efficiency and

organisation, the chunks also known as leaves are grouped through merkle trees.

This paper seeks to optimise the size of these leaves with regard to the rate of

corruption in the medium of transmission to minimise the time taken to verify the

data.

2​ Theoretical Background

2.1​ Hash Functions

“Hash functions are simply functions that take inputs of some length and compress

them into short, fixed-length outputs.” (Katz & Lindell, 2021). The semantics of what

is entailed by compressing the inputs is mostly irrelevant to the investigation

however a brief understanding is necessary to prove the security of the hash function

that will be used in this investigation. SHA-256 is a hash function a part of the SHA-2

family, designed by the NSA and first published in 2001 (Penard & van Werkhoven,

2008). The hash, also known as a digest, generated from hash functions is used

generally to determine if the input has changed since the hash was generated.

Essentially, for any given input into a hash function, a unique identifier is outputted,

notably of fixed size, hence decreasing the time taken in data transfer. In our case

this unique identifier is used to determine whether or not an input has changed when

being transmitted across a channel, in an O(n) or a fixed 256 bit (SHA256) manner.

The National Institute of Standards and Technology (NIST) has a publication on

Secure Hash Standards (SHS) for various hashing algorithms. There are two main

stages that take place in the SHA-256 algorithm, preprocessing and hash

computation. The message is first converted into binary before being padded with

bits to reach a multiple of 512, once padded it is parsed into message blocks now

called the initial hash value.

Figure 1: Hashing procedure

After being processed, an output is computed through the use of 6 logical functions

such as AND, OR and XOR as well as 64 32-bit constants. The output becomes the

input for the next iteration of which there is a total of 64. Included in the appendix are

details on the 6 logical functions and 64 32-bit constants as well as the hash

computation instructions; it is important to note however that understanding the inner

workings of hash functions is entirely unnecessary to understand its applications.

Essentially, the iterative operations in SHA-256 introduce added complexity and

randomness making it more resistant to cryptographic attacks that may have

threatened earlier or simpler hash algorithms.

2.2​ Merkle Trees

Merkle trees are a space efficient data structure that makes it easy to verify data. A

large file can be distilled into the fixed size of the hashing algorithm being used: in

our case, SHA256 hashes are 256 bits long (Merkle, 1987). As previously explained

in the hash functions section, any change or corruption of any file would cause the

root hash to be distinctly different, allowing quick identification of a data verification

error by verifying a fixed amount of data as opposed to a variable amount. In

addition, the ‘tree’ format of the data allows a traversal such that the specific file that

was corrupted can be identified using the merkle proof. Merkle proofs contain the

hashes of various parts of the tree such that when verified against a specific hash

the full merkle tree and thus the roots can be compared. Merkle proofs are thus a

space efficient way to identify errors whilst also limiting the amount of data

transferred thus decreasing the time taken to transfer the verification of the data.

Hence, merkle trees are a widely used data structure in applications where data

verification is essential (Becker, 2008).

Merkle trees are built upon hash functions. A merkle tree is constructed by taking

partitions, in our case the even (2n) splitting of a file, and hashing each partition that

makes up the leaves of the tree. The hashes of these partitions are then hashed

together and those hashes again hashed together such that it forms a root hash like

seen below.

Figure 2: Corrupted file in a merkle tree

It is helpful to realise that the main purpose of hash functions to us and this

experiment is to determine whether or not something has changed. By hashing and

combining these different file partitions we are able to determine which specific parts

of the original file have been corrupted during transmission. As seen in Figure 2, the

yellow nodes are acceptable nodes whose children have not been affected by the

corruption of any files. The right side of the tree is entirely unaffected by corruption,

in an average or best case scenario when identifying files for requery, an O(logn)

amount of nodes would need to be checked and queried for again, as opposed to

O(n) nodes amount in a structure of e.g. an array (Cachin & Camenisch, 2004).

2.3​ Network Unreliability

Network reliability is the measure of the number of bits transferred compared to the

number of bits received by the dress without corruption. This is known as a bit error

rate and for modern LANs should not exceed one error in 10 billion bits transmitted

(Elliott, B. J., 2000). Our experiment is thus catered towards more extreme cases

whereby networks are severely impaired these include but are not limited to: times of

high network congestion, topological obstructions, and single points of failure in

decentralised networks. These scenarios best illustrate the efficacy of the data

structure however it is certainly applicable to other situations.

There are two main ways to simulate network unreliability, the first way is by actually

sending the data through a channel and purposefully corrupting a certain number of

the files being sent. Another is to make certain assumptions and consider the

network’s reliability while standardising other elements of the data transfer such as

requeries for corrupted data, speed of data transmission and computation.

When a file partition from the merkle tree is sent, an accompanying merkle proof is

sent to verify against the file to see if it has been corrupted during transfer. There are

a number of complexities regarding network reliability that can be overlooked in this

situation of ideal transfer, for example any data sent over the network, not just limited

to the sent file but also the accompanying merkle proof is subject to corruption. Thus

when considering the speed at which the network transfer takes place, requeries for

the corrupted data need to consider both the network speed, size and validity of the

proofs as well as file sizes when accounting for the simulated time.

Figure 3: Increasing total transmitted data with fixed proofs

3​ Primary Data

3.1​ Hypothesis

A large file cannot risk transmission in an unreliable network as the corruption of any

part of transmission would require the retransmission of the entire file. By splitting

this file into different partitions, each partition can be checked to narrow down the

root of the error; with a merkle tree the process of this checking is even more

efficient, being able to determine if certain subtrees are accurate and thus reducing

the total time in data verification. The main dilemma here is thus the number of

partitions the merkle tree should be made up of. More partitions increase granularity

in error detection but increases overhead in computation of the related merkle

operations. Moreover, the benefits of the granularity in error detection diminish as the

number of partitions increases while the computational costs, being based on

SHA256, are fixed. Therefore, I hypothesise that there is an equilibrium between the

benefits of the merkle tree’s efficiency in finding errors that still respects the fixed

overhead involved in a higher number of partitions, to result in the lowest amount of

time.

3.2​ Methodology

Our primary goal is to determine whether or not there is an optimal file size for

leaves of a merkle tree in verifying data transfer across an unreliable channel. The

case is that, for larger leaf sizes or fewer partitions, corruption in transmission would

result in the entire file or partition having to be retransmitted, increasing the total

amount of time required to transfer the file, whilst accounting for any unreliability. On

the other hand, having too many partitions or leaf sizes too small would similarly

result in an increase in the amount of time required to correctly transfer the file due

to the process of hashing and constructing the larger tree.

A program can be used to simulate and test the variance in the size of the merkle

tree’s leaf sizes and the time taken to transfer these files. The program can be split

into three parts, the setup of the experiment, the core algorithm simulating the

verification and requerying of data, and the testing of it. To set up the experiment, we

can first model the file being transferred, e.g. a photo. This photo is then converted

into base64, converting the binary values of the image into printable characters

which can then be made into partitions of 2x to match a perfect merkle tree. Some

complexities involved in the cleaning up of the data and converting the image to text

to construct the tree are also necessary and included in the code in the appendix

however it is secondary to the essence of the experiment, the data verification, and

will thus be omitted for clarity. A merkle tree can be created from these partitions,

hashing each file in succession as explained in Section 2.2.

Figure 4: Data setup

Now that our inputs are set up we can simulate the amount of time expended by a

given transfer of data, to this end, a few factors need to be identified. The main

factors contributing to the time taken are network speed, transfer of the merkle proof,

hashing speed, and merkle tree construction. The time taken to transfer the actual

file and its accompanying merkle proof used to verify its validity can be calculated

through the use of a few benchmarks.

By taking our photo as a benchmark, when deconstructed into characters it contains

around 333,000, equivalent to around 333KB. We’ll assume all network transfers

take place at an average of 1 MB/s. Note, the specific benchmarks, file sizes and

their real world validity are irrelevant as it is only the relative relationship between the

merkle trees’ variations and network transfers that we’re finding.

 1𝑀𝐵/𝑠 = 0.333𝑀𝐵
𝑡

 𝑡 = 0. 333𝑠

Thus for a given block size of characters, the time taken to send across a 𝑥

theoretical network can be found by multiplying by . 𝑥 1 × 10−6

To fully simulate our data transfer and verification scenario, we’ll need to consider

the speed of hashing and merkle tree construction in addition to the speed of the

network. We can take a few baselines such as the speed at which hashes can be

generated, at 500MB/s, which I found by taking the average of some timings hashing

files locally with SHA256. Hence we can calculate the simulated amount of time

added by hashes and merkle tree construction using these baselines, and adding it

to a simulated time variable. The summation of this and the actual run time

representing the total time taken in data transmission and verification.

With the data to be transferred we’ll now need to mimic network unreliability in a

real-world setting. This can be done in several ways as mentioned in Section 2.3

however for our experiment we’ll simulate it through the use of randomness. To test

our three different channels of unreliability where 33%, 66%, and 99% of data files

corrupt, a variable of a random value from 0 to 1 can be used. The process of data

transfer being looped if the random value generated is e.g. smaller than or equal to

0.33, the simulated hashing and transfer of the leaf is calculated as shown above,

thus mimicking the additional time taken in retransmission of corrupted files.

In addition to this, we will limit the amount of retries for corrupted data. This may

introduce a bias towards more unreliable networks however it replicates the time out

functionality of most modern query systems in order to preserve user experience and

prevent indefinite waiting from the network’s unreliability. This results in the following:

Figure 5: Corruption detection and requery

By combining the two functions, we can test variations in unreliability and etc:

Figure 6: Test and results generation

3.3​ Observations

Initially, I tried to find a shortcut by simulating hashes based on reliability. Essentially,

I assumed that the bulk of the time added to compute was from the computer’s

processing of hashes and construction of the merkle tree. While this certainly adds

time, it is much more fixed and thus would not scale with the implicated differences

in file partitions and thus sizes being transmitted and retransmitted in case of

corruption. Additionally, this is fundamentally wrong and doesn't utilise the unique

property of merkle trees to not require traversing through the entire tree, simply using

the merkle proof to identify specific subtrees that had errors. The fix was to shift the

focus from calculating the time taken to hash and construct merkle trees to the

simulated time taken as a result of the transfer of proofs and blocks based on size

across the network. This process was described earlier, and the estimated network

transfer speeds contributed to the majority of the computed time, serving as the

variable time illustrating the time as opposed to the fixed time of the hashing

computations.

When trying to find the corrupted leaf, simply verifying the proof against the original

root does not work as the simulated network unreliability affects more than just the

current leaf being verified, the corruption during transmission is across all leaves and

thus the merkle proofs need to be sent with each file. Thus this issue can be fixed by

querying for the same block and proof each time if the block transferred does not

verify correctly with the sent proof. This issue is exacerbated by poor network

conditions and thus a retry cap is implemented to mimic real-world back off

mechanisms waiting for network conditions to improve.

3.4​ Results

Table 1: Total time taken vs number of partitions across a channel of 33% corruption

Graph 1: Graphed table from a range of 2-1024 partitions across a channel of 33%

corruption

Table 2: Total time taken vs number of partitions across a channel of 66% corruption

Graph 2: Graphed table from a range of 2-1024 partitions across a channel of 66%

reliability.

Table 3: Total time taken vs number of partitions across a channel of 99% corruption

Graph 3: Graphed table from a range of 2-512 partitions across a channel of 99%

corruption.

As there is a linear relationship and significant impact to what is shown on the graph

when plotting the values above 1024 partitions, I’ve omitted the inclusion of points

above 1024 partitions in the graph so as to better illustrate the relationship between

the optimum number of partitions.

4​ Data Analysis

As mentioned in 3.3 Observations, a retry cap may cause a systematic error in the

results. It affects environments of high unreliability and large partition sizes, thus

favouring smaller partitions in channels of higher unreliability. A more adaptive retry

mechanism could be implemented in the future, adjusting the retry cap accordingly.

Aside from this, there are not many experimental errors as the computations are

fixed in all bit randomness when testing across unreliable channels. The only real

improvements would be to increase complexity in areas such as varied network

reliability which will be explored further in the next steps.

Across the channel with a 33% corruption rate, there is a clear U-like relationship

seen between the first five 2n partitions, the optimal number of partitions converging

at around n = 6 or 64 partitions, though the adjacent points seem to be roughly the

same in terms of time taken. This ‘U’ like relationship becomes less and less

pronounced for the channel of 66% corruption rate which sees an optimum range of

time in transmission at around 4 to 32 partitions before continuing the linear increase

in time seen across both other channels after around 512 partitions. For the channel

of 99% corruption rate there is an almost unnoticeable optimal number of partitions,

forming a linear relationship from about 64 partitions onwards, with the first 64 taking

approximately the same amount of time on average.

The cause of the ‘U’ like relationship being less pronounced as the corruption rate of

the channel increases: this can be attributed to two factors. With a lower rate of

corruption, a merkle tree’s ability to distribute risk is far more effective as entire

subsections of the tree can be disregarded, therefore more quickly narrowing down

the corrupted partition for requery. In addition to this, as the corruption rate is higher,

the fixed data such as the merkle proofs will also need to be retransmitted more and

more, thus making this normally negligible factor to majorly contribute to the total

time taken, neutering the obvious ‘U’ shape.

The initial point of two partitions, is sensibly quite high and also quite inconsistent in

its spread of data as would be expected from the nature of its transmission. These

large partitions have a higher probability of corruption in transmission and thus would

require the retransmission of each partition. From around 256 to 4096 partitions

there is a linear relationship, the time taken seems to increase proportionately with

the number of partitions as the sizes of each partition decreases and the fixed times

to transfer the partitions and their accompanying merkle proofs increase.

My hypothesis that an equilibrium would be reached between the partition sizes and

total time taken seems to take place across all test cases. The valley like relationship

of a convergence taking place particularly in the channels of lower corruption rate,

reaching a point of equilibrium in time taken from 2 to 64 partitions whereby the time

taken increases proportionally as presumably the fixed sizes of the partitions, its

merkle proofs, and any related computation increases.

5​ Next Steps

As is, the experiment tests a few set channels of unreliability, from where 33%, 66%,

and 99% of packets sent will be corrupted and require retransmission. These

channels have provided clear benchmarks on the general relationship between

channel unreliability and number of file partitions in order to create a more practical

formula or solution, changing the specific reliability of the channel such that it is more

analogue will be essential. The changes in reliability can be modelled either as

random bursts of unreliability, or by linearly changing the percentage of corruption

from 1 to 100% in 1% increments. This would enable the modelling of a

mathematical function that graphed the optimal file partition size on average and

across every amount of channel unreliability, making the experiment’s results more

practical for applications.

Extending upon the real world applications of this experiment, the bursts in channel

reliability could be combated with an exponential backoff strategy for retries. This

would essentially increase the duration between requeries of corrupt data assuming

that the network should recover given enough time. This would be a highly practical

experiment and based on the results of this experiment, more relevant to the lower

amount of channel reliability that a normal network user would realistically face. By

dynamically adapting the size of file partitions to most effectively utilise a merkle

tree’s ability to detect errors and requery, network requests across unreliable

channels would be much more efficient, ready to be applied to real world scenarios.

6​ Conclusion

This paper has investigated the relationship between the number of file partitions

and the reliability of the channel. For channels with a low corruption rate there is a

clear optimum number of partitions at around 26 or 64 partitions. This value was

experimentally found and may thus differ in different conditions. It serves, however,

as a clear indication of the existence of a standard number of partitions for the

experimented channels of reliability. As the unreliability of the channel increases, this

optimum number of partitions becomes less clear. I hypothesise that this is due to

the fact that as the unreliability of the channel increases, the files are more likely to

be corrupted on average, thus increasing both the overhead fixed hashing and

merkle tree computations as well as increasing the variable number of requeries.

The logarithmic efficiency of the error detection becomes void in channels with high

unreliability. In these cases, the subsequent queries by the Merkle tree result in a

more simple linear check of each hash's validity due to the increase in corruption.

To answer the research question, block sizes of a merkle tree can be optimised by

splitting the file into 26 number of partitions, though this optimum varies slightly and

the adjacent n number of partitions work similarly well in minimising the total amount

of time involved in the verification of the data transmission. This optimum is less

obvious in channels of higher unreliability however as a merkle tree’s efficiency

decreases significantly when most if not all the root blocks are corrupted, essentially

defaulting to a worse version of the linear check of the block’s hashes, with pointless

transferred merkle proofs, hashing computations, and merkle tree construction.

Appendix

SHA-256 6 logical functions:

SHA-256 64 32-bit constants:

SHA-256 Hash Computation instructions:

Data processing:​

Main code:

References

Becker, G. (2008, July 18). Merkle Signature Schemes, Merkle Trees and Their

Cryptanalysis. CiteSeerX. Retrieved August 14, 2024, from

https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=d7c3aa65b

c5df32d94dcc8b29dceca240bdf8bef

Cachin, C., & Camenisch, J. (Eds.). (2004). Advances in Cryptology – EUROCRYPT

2004: International Conference on the Theory and Applications of

Cryptographic Techniques, Interlaken, Switzerland, May 2-6, 2004.

Proceedings. Springer Berlin Heidelberg.

Elliott, B. J. (2000). Cable Engineering for Local Area Networks. Elsevier Science.

Katz, J., & Lindell, Y. (2021). Introduction to Modern Cryptography. CRC Press.

Merkle, R. C. (1987). A digital signature based on a conventional encryption function.

People @EECS. Retrieved August 14, 2024, from

https://people.eecs.berkeley.edu/~raluca/cs261-f15/readings/merkle.pdf

NIST. (2015, August 4). Federal Information. NIST Technical Series Publications.

Retrieved April 2, 2024, from

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf

Penard, W., & van Werkhoven, T. (2008). Chapter 1 On the Secure Hash Algorithm

family.

Tomescu, A., Crosby, S. A., & Wallach, D. S. (2020, December 22). What is a Merkle

Tree? Decentralized Thoughts. Retrieved April 2, 2024, from

https://decentralizedthoughts.github.io/2020-12-22-what-is-a-merkle-tree/

	1​Introduction
	2​Theoretical Background
	2.1​Hash Functions
	2.2​Merkle Trees
	2.3​Network Unreliability

	
	3​Primary Data
	3.1​Hypothesis
	3.2​Methodology
	
	3.3​Observations
	3.4​Results

	
	4​Data Analysis
	5​Next Steps
	6​Conclusion
	Appendix
	References

